Страница публикации

Наблюдаемость систем дифференциально-алгебраических уравнений в классе функций Чебышева

Авторы: Петренко П.С.

Журнал: Известия Иркутского гос. ун-та. Сер. Математика

Том: 20

Номер:

Год: 2017

Отчётный год: 2017

Издательство:

Местоположение издательства:

URL:

Проекты:

DOI:

Аннотация: Рассматриваются линейные системы обыкновенных дифференциальных уравнений с переменными коэффициентами, не разрешенные относительно производной искомой вектор-функции и тождественно вырожденные в области определения. Такие системы называются системами дифференциально-алгебраических уравнений (ДАУ). Мерой неразрешенности ДАУ относительно производных служит целочисленная величина, называемая индексом. Допускается произвольно высокий индекс, не превышающий порядок рассматриваемой системы. Анализ проводится в предположении существования структурной формы с разделенными дифференциальной и алгебраической подсистемами. Эта структурная форма эквивалентна искомой системе в смысле решений, а оператор, преобразующий исходную систему ДАУ к этой структурной форме, обладает левым обратным оператором. Построение структурной формы носит конструктивный характер и не использует замену переменных, при этом автоматически решается проблема согласования начальных условий. Этот подход использует понятие r-продолженной системы, где r - индекс неразрешенности. Необходимым и достаточным условием существования структурной формы является наличие в матрице, описывающей r-продолженную систему неособенного минора порядка n(r + 1), где n - размерность рассматриваемой системы ДАУ. Исследуется наблюдаемость системы ДАУ по заданному скалярному выходу. Задача наблюдаемости состоит в нахождении вектора состояния системы на основании неполных данных о его компонентах, заданных с помощью выходной функции. В качестве класса функций разрешающих операций, т. е. решающих задачу наблюдаемости, кроме кусочно-непрерывных рассматривается класс обобщенных функций Чебышева. Получено достаточное условие R-наблюдаемости (наблюдаемости в пределах множества достижимости) линейных нестационарных систем ДАУ в классе многочленов Чебышева. Для иллюстрации полученных результатов рассмотрен пример.

Индексируется WOS: Нет

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Да

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0