Страница публикации
Convex-valued selectors of a Nemytskii operator with nonconvex values and their applications
Авторы: Tolstonogov A.A., Timoshin S.A.
Журнал: J. of Nonlinear and Convex Analysis
Том: 16
Номер: 6
Год: 2015
Отчётный год: 2015
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI:
Аннотация: The Nemytskii operator generated by a multivalued mapping whose values are compacts from a Banach space is considered. In every point this mapping is either upper semicontinuous and has convex values or it is lower semicontinuous in a neighborhood of the point. We prove that the multivalued Nemytskii operator has a multivalued selector with convex closed values which is upper semicontinuous in the weak topology of the space of integrable functions in every point of its domain. The result we obtain is applied to prove the existence of a solution to an evolution inclusion with subdifferential operators and a multivalued perturbation, the latter having different semicontinuity types at different points of the domain.
Индексируется WOS: Q3
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0