Страница публикации

Точные решения одного класса нелинейных эллиптических систем специального вида

Авторы: Косов А.А., Семенов Э.И.

Журнал: Известия ИГУ. Сер. Математика

Том: 11

Номер:

Год: 2015

Отчётный год: 2015

Издательство:

Местоположение издательства:

URL:

Проекты:

DOI:

Аннотация: В статье изучается задача построения точных решений для нелинейной системы двух уравнений эллиптического типа. Нелинейные системы уравнений эллиптического типа применяются в качестве математических моделей в теории тепло- и массопереноса реагирующих систем, в теории химических реакторов, теории горения и математической биологии. В одномерном случае к этому же классу уравнений можно отнести описываемую обыкновенными дифференциальными уравнениями модель магнитной изоляции вакуумного диода. Нахождение точных решений для нелинейных эллиптических систем играет важную роль как для развития теории и установления свойств всего множества решений, так и для приложений. Точные решения можно использовать для тестирования и верификации численных методов решения краевых задач. В данной статье рассматривается система двух уравнений эллиптического типа с одной нелинейностью, зависящей от разности квадратов искомых функций. Найдены условия на нелинейность, при которых система редуцируется к одному уравнению. Показано, что в этом случае система сводится к полулинейному эллиптическому уравнению специального вида, лишь одним слагаемым отличающимся от уравнения Гельмгольца. Отдельно изучен случай системы, не сводящейся ни при какой нелинейности к одному уравнению. Для этого случая выведено интегро-дифференциальное уравнение, которому должны удовлетворять радиально-симметричные решения. Указаны случаи, когда это уравнение сводится к обыкновенному дифференциальному уравнению и интегрируется в явном виде. Приведен ряд примеров построения точных решений, задаваемых элементарными функциями, для систем с двумерным и трехмерным оператором Лапласа.

Индексируется WOS: Нет

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Да

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0