Страница публикации
Приложения функций типа Ляпунова к задачам оптимизации в импульсных управляемых системах
Авторы: Самсонюк О.Н.
Журнал: Известия Иркутского гос. ун-та. Сер. Математика
Том: 14
Номер:
Год: 2015
Отчётный год: 2015
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI:
Аннотация: В статье обсуждается применение функций типа Ляпунова к условиям оптимальности импульсных процессов. Рассматривается задача оптимального импульсного управления с траекториями ограниченной вариации и импульсными управлениями типа регулярной векторной меры. Эта задача характеризуется двумя основными особенностями. Во-первых, управляемая система линейна по импульсному управлению и может не удовлетворять так называемому условию корректности типа Фробениуса. Это приводит к появлению дополнительной компоненты управления, позволяющей связать соответствующую разрывную траекторию с аппроксимирующей последовательностью абсолютно непрерывных траекторий. Во-вторых, в задаче имеются промежуточные фазовые ограничения на односторонние значения траекторий в заданные моменты времени. Для задачи оптимального импульсного управления с промежуточными фазоограничениями получены достаточные условия оптимальности, относящиеся к канонической теории оптимальности Гамильтона - Якоби. Они основаны на применении множеств сильно монотонных функций типа Ляпунова - решений соответствующих проксимальных неравенств типа Гамильтона - Якоби. Наличие в задаче промежуточных фазоограничений потребовало применения составных функций типа Ляпунова, кусочно определенных по переменной времени t. Непрерывные компоненты составных функций обладают свойством сильной монотонности относительно импульсной управляемой системы на соответствующих промежутках времени t. При этом для получения симметричных результатов и расширения области применения условий оптимальности в составные функции включены необязательные компоненты, обладающие свойством сильной монотонности относительно предельной системы, описывающей эволюцию скачков разрывных траекторий. Рассмотрены примеры, иллюстрирующие представленные условия оптимальности.
Индексируется WOS: Нет
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0