Страница публикации
Existence and uniqueness of solutions to weakly singular integral-algebraic and integro-differential equations
Тип публикации: Статья в журнале
Тип материала: Текст
Авторы: Bulatov M.V., Lima P.M., Weinmuller E.B.
Журнал: Central European Journal of Mathematics
Язык публикации: english
Том: 12
Номера страниц: 308-321
Количество страниц: 14
Номер: 2
Год публикации: 2014
Отчетный год: 2014
DOI: 10.2478/s11533-013-0334-5
Аннотация: We consider systems of integral-algebraic and integro-differential equations with weakly singular kernels. Although these problem classes are not in the focus of the main stream literature, they are interesting, not only in their own right, but also because they may arise from the analysis of certain classes of differential-algebraic systems of partial differential equations. In the first part of the paper, we deal with two-dimensional integral-algebraic equations. Next, we analyze Volterra integral equations of the first kind in which the determinant of the kernel matrix k(t, x) vanishes when t = x. Finally, the third part of the work is devoted to the analysis of degenerate integro-differential systems. The aim of the paper is to specify conditions which are sufficient for the existence of a unique continuous solution to the above problems. Theoretical findings are illustrated by a number of examples.
Индексируется WOS: Q3
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет