Страница публикации

Методика динамического анализа времени выполнения программ в гетерогенных распределенных вычислительных средах

Авторы: Феоктистов А.Г., Башарина О.Ю.

Журнал: Вестник Иркутского гос. техн. ун-та

Том: 22

Номер: 6 (137)

Год: 2018

Отчётный год: 2018

Издательство:

Местоположение издательства:

URL:

Проекты:

DOI: 10.21285/1814-3520-2018-6-109-119

Аннотация: ЦЕЛЬ работы заключается в разработке методики оценки времени выполнения программ в гетерогенной распределенной вычислительной среде. В настоящее время получение такой оценки является важной и нетривиальной проблемой во многих практических приложениях, связанных с планированием вычислений и распределением ресурсов. МЕТОДЫ. В данной работе применяется метод частотных характеристик, базирующийся на использовании специальных инструментальных средств для динамического анализа программ и хорошо зарекомендовавший себя на практике. РЕЗУЛЬТАТЫ. Предложена новая методика, обеспечивающая оценку времени выполнения программ с учетом характеристик эталонного и целевого вычислительных узлов, а также программных параметров, отражающих вычислительную нагрузку на компоненты этих узлов. Оценки вычисляются с учетом объемов исходных данных. Данная методика успешно применена в процессе анализа выполнения программы для решения задачи перемножения матриц. Приведены тестовые примеры получения оценки времени решения таких задач, в которых ее погрешность не превышает 10%. Полученные результаты демонстрируют уменьшение погрешности оценки по мере увеличения размерности матриц, как для целочисленных, так и для вещественных значений. ВЫВОДЫ. Использование предложенной методики в гетерогенной распределенной вычислительной среде, организованной на базе ресурсов Центра коллективного пользования «Иркутский суперкомпьютерный центр СО РАН», для реального потока заданий показало существенное улучшение полученных оценок времени выполнения программ по сравнению с оценками необходимого времени решения задач, содержащихся в запросах пользователей среды, а также их значениями, скорректированными на основе вычислительной истории выполнения заданий.

Индексируется WOS: Нет

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Да

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0