Страница публикации
Method of limiting differential inclusions for nonautonomous discontinuous systems with delay
Авторы: Finogenko I.A.
Журнал: Proceedings of the Steklov Institute of Mathematics
Том: 305
Номер: 1
Год: 2019
Отчётный год: 2019
Издательство:
Местоположение издательства:
URL:
Проекты:
Эволюционные уравнения и управляемые системы: теория, численный анализ и приложения
DOI: 10.1134/S0081543819040084
Аннотация: Functional-differential equations <(x)over dot> = f (t, phi(.)) with piecewise continuous right-hand sides are studied. It is assumed that the sets M of discontinuity points of the right-hand sides possess the boundedness property in contrast to being zero-measure sets, as in the case of differential equations without delay. This assumption is made largely because the domain of the function f is infinite-dimensional. Solutions to the equations under consideration are understood in Filippov's sense. The main results are theorems on the asymptotic behavior of solutions formulated with the use of invariantly differentiable Lyapunov functionals with fixed-sign derivatives. Nonautonomous systems are difficult to deal with because omega-limiting sets of their solutions do not possess invariance-type properties, whereas sets of zeros of derivatives of Lyapunov functionals may depend on the variable t and extend beyond the space of variables phi(.). For discontinuous nonautonomous systems, there arises the issue of constructing the limiting differential equations with the use of shifts f(tau)(t + tau, (.)) of the function f. We introduce the notion of limiting differential inclusion without employing limit passages on sequences of shifts of discontinuous or multivalued mappings. The properties of such inclusions are studied. Invariance-type properties of omega-limiting sets of solutions and analogs of LaSalle's invariance principle are established.
Индексируется WOS: Q3
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0