Страница публикации

On the Analytic Solutions of a Special Boundary Value Problem for a Nonlinear Heat Equation in Polar Coordinates

Тип публикации: Статья в журнале

Тип материала: Текст

Авторы: Kazakov A.L., Kuznetsov P.A.

Журнал: Journal of Applied and Industrial Mathematics

Язык публикации: english

Том: 12

Номера страниц: 255-263

Количество страниц: 9

Номер: 2

Год публикации: 2018

Отчетный год: 2018

DOI: 10.1134/S1990478918020060

Аннотация: The paper addresses a nonlinear heat equation (the porous medium equation) in the case of a power-law dependence of the heat conductivity coefficient on temperature. The equation is used for describing high-temperature processes, filtration of gases and fluids, groundwater infiltration, migration of biological populations, etc. The heat waves (waves of filtration) with a finite velocity of propagation over a cold background form an important class of solutions to the equation under consideration. A special boundary value problem having solutions of such type is studied. The boundary condition of the problem is given on a sufficiently smooth closed curve with variable geometry. The new theorem of existence and uniqueness of the analytic solution is proved.

Индексируется WOS: Нет

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Нет

Индексируется ВАК: Нет

Индексируется CORE: Нет