Страница публикации
An effective heuristic for large-scale fault-tolerant k-median problem
Тип публикации: Статья в журнале
Тип материала: Текст
Авторы: Vasilyev I., Ushakov A.V., Maltugueva N., Sforza A.
Журнал: Soft Computing
Язык публикации: english
Том: 23
Номера страниц: 2959-2967
Количество страниц: 9
Номер: 9
Год публикации: 2019
Отчетный год: 2018
DOI: 10.1007/s00500-018-3562-6
Аннотация: We address a general fault-tolerant version of the k-median problem on a network. Unlike the original k-median, the objective is to find k nodes (medians or facilities) of a network, assign each non-median node (customer) to rj distinct medians, and each median nodes to rj- 1 other medians so as to minimize the overall assignment cost. The problem can be considered in context of the so-called reliable facility location, where facilities once located may be subject to failures. Hedging against possible disruptions, each customer is assigned to multiple distinct facilities. We propose a fast and effective heuristic rested upon consecutive searching for lower and upper bounds for the optimal value. The procedure for finding lower bounds is based on a Lagrangian relaxation and a specialized effective subgradient algorithm for solving the corresponding dual problem. The information on dual variables is then used by a core heuristic in order to determine a set of primal variables to be fixed. The effectiveness and efficiency of our approach are demonstrated in a computational experiment on large-scale problem instances taken from TSPLIB. We show that the proposed algorithm is able to fast find near-optimal solutions to problem instances with almost 625 million decision variables (on networks with up to 24978 vertices).
Индексируется WOS: Q2
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Нет
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 1