Страница публикации

Вариационная устойчивость задач оптимального управления с субдифференциальными операторами

Авторы: Толстоногов А.А.

Журнал: Матем. сборник

Том: 202

Номер: 4

Год: 2011

Отчётный год: 2011

Издательство:

Местоположение издательства:

URL:

Проекты:

DOI: 10.4213/sm7704

Аннотация: Рассматривается задача минимизации интегрального функционала с невыпуклым по управлению интегрантом на решениях управляемой системы в гильбертовом пространстве с ограничением на управление, представляющим собой зависящее от фазовой переменной многозначное отображение с замкнутыми невыпуклыми значениями. Интегрант, субдифференциальные операторы, возмущение, начальные условия и ограничение на управление зависят от параметра. Наряду с исходной задачей рассматривается задача минимизации интегрального функционала с овыпукленным по управлению интегрантом на решениях этой же системы, но с овыпукленным ограничением на управление. Под решением управляемой системы понимается пара “траектория-управление”. Доказано, что при каждом значении параметра овыпукленная задача имеет решение, которое является пределом минимизирующей последовательности исходной задачи, а минимальное значение функционала с овыпукленным интегрантом является непрерывной функцией параметра. Обычно это свойство называют вариационной устойчивостью задач минимизации. Рассмотрен пример управляемой параболической системы с гистерезисным и диффузионным эффектами. Библиография: 24 названия.

Индексируется WOS: Нет

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Да

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0