Страница публикации

Convergence analysis of linear multistep methods for a class of delay differential-algebraic equations

Тип публикации: Статья в журнале

Тип материала: Текст

Авторы: Bulatov M.V., Linh V.H., Truong N.D.

Журнал: Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software

Язык публикации: english

Том: 11

Номера страниц: 78-93

Количество страниц: 16

Номер: 4

Год публикации: 2018

Отчетный год: 2018

DOI: 10.14529/mmp180406

Аннотация: Delay differential-algebraic equations (DDAEs) can be used for modelling real-life phenomena that involve simultaneously time-delay effect and constraints. It is also known that solving delay DAEs is more complicated than solving non-delay ones because approximation of solutions in the past time is usually needed and discontinuity in higher derivatives of the solutions is typical. Recently, we have proposed and investigated linear multistep (LM) methods for strangeness-free DAEs (without delay). In this paper, we extend the use of LM methods to a class of structured strangeness-free DAEs with constant delay. For the approximation of solutions at delayed time we use polynomial interpolation. Convergence analysis for LM methods is presented. It is shown that, similarly to the non-delay case, the strict stability of the second characteristic polynomial associated with the methods is not required for the convergence if we discretize an appropriately reformulated DDAE instead of the original one. Numerical experiments are also given for illustration.

Индексируется WOS: Q5

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Да

Индексируется ВАК: Нет

Индексируется CORE: Нет