Страница публикации
Multiple covering of a closed set on a plane with non-Euclidean metrics
Авторы: Lempert A., Le Q.
Журнал: IFAC-PapersOnLine
Том: 51
Номер: 32
Год: 2018
Отчётный год: 2018
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI: 10.1016/j.ifacol.2018.11.439
Аннотация: The article is devoted to multiple circle covering problem for a bounded set in a two-dimensional metric space with a given amount of circles. Such statements arise in the construction of global navigation systems like GPS and Glonass. A similar problem appears in infrastructure logistics if there is a main servicing system and it is necessary to create a duplicate system to support service in the case of failure of one or more nodes. To solve this problem, we propose a computational algorithm based on a combination of the optical -geometric approach due to Fermat and Huygens principles and Voronoi diagram. A key feature of the algorithm is the ability to deal with non-Euclidean metrics. Numerical results and a comparison with known approaches are presented and discussed.
Индексируется WOS: Q5
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0