Страница публикации

Multiple covering of a closed set on a plane with non-Euclidean metrics

Авторы: Lempert A., Le Q.

Журнал: IFAC-PapersOnLine

Том: 51

Номер: 32

Год: 2018

Отчётный год: 2018

Издательство:

Местоположение издательства:

URL:

Проекты:

DOI: 10.1016/j.ifacol.2018.11.439

Аннотация: The article is devoted to multiple circle covering problem for a bounded set in a two-dimensional metric space with a given amount of circles. Such statements arise in the construction of global navigation systems like GPS and Glonass. A similar problem appears in infrastructure logistics if there is a main servicing system and it is necessary to create a duplicate system to support service in the case of failure of one or more nodes. To solve this problem, we propose a computational algorithm based on a combination of the optical -geometric approach due to Fermat and Huygens principles and Voronoi diagram. A key feature of the algorithm is the ability to deal with non-Euclidean metrics. Numerical results and a comparison with known approaches are presented and discussed.

Индексируется WOS: Q5

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Да

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0