Страница публикации
Новые условия глобальной оптимальности в задаче с D.C. ограничениями
Тип публикации: Статья в журнале
Тип материала: Текст
Авторы: Стрекаловский А.С.
Журнал: Труды института математики и механики УрО РАН
Язык публикации: russian
Том: 25
Номера страниц: 245-261
Количество страниц: 17
Номер: 1
Год публикации: 2019
Отчетный год: 2019
Переводная версия: {"id":4522,"authors":"Strekalovsky A.S.","authors_count":1,"title":"New global optimality conditions in a problem with d.c. constraints","journal":"Trudy Instituta Matematiki i Mekhaniki URO RAN","year":2019,"reportYear":2019,"volume":"25","number":"1","month":null,"url":"","pages":"245-261","address":"","type":"\u0422\u0435\u043a\u0441\u0442","publisher":"","edition":"","language":"english","classification":"\u0421\u0442\u0430\u0442\u044c\u0438 \u0432 \u0437\u0430\u0440\u0443\u0431\u0435\u0436\u043d\u044b\u0445 \u0438 \u043f\u0435\u0440\u0435\u0432\u043e\u0434\u043d\u044b\u0445 \u0436\u0443\u0440\u043d\u0430\u043b\u0430\u0445","annotation":"The paper addresses a nonconvex nonsmooth optimization problem with the cost function and equality and inequality constraints given by d.c. functions, i.e., functions representable as the difference of convex functions. The original problem is reduced to a problem without constraints with the help of exact penalization theory. Then the penalized problem is represented as a d.c. minimization problem without constraints, for which new mathematical tools are developed in the form of global optimality conditions (GOCs). The GOCs reduce the nonconvex problem in question to a family of linearized (convex) problems and are used to derive a nonsmooth form of the Karush-Kuhn-Tucker theorem for the original problem. In addition, the GOCs possess a constructive (algorithmic) property, which makes it possible to leave the local pits and stationary (critical) points of the original problem. The effectiveness of the GOCs is demonstrated with examples.","published_at":null,"doi":"10.21538\/0134-4889-2019-25-1-245-261","is_to_print":0,"is_special":0,"is_wos":1,"is_scopus":1,"is_risc":0,"is_editable":0,"publication_type_id":1,"added_by_rb_user_id":null,"notes":"","created_at":"2019-06-26 03:21:47","updated_at":"2020-02-26 02:24:25","translated_id":null,"quartile":"Q5","series":"","is_vak":0,"conference":null,"is_public_pdf":0,"eid":null,"wosid":null,"quartile_scopus":null,"report_type":null,"speaker":0,"is_wl":0,"quartile_wl":null,"count_pages":17,"date_event_start":null,"date_event_end":null,"location_event":null,"lvl_event":null,"link_event":null,"title_event":null,"is_affiliation_idstu":null,"is_expert_opinion":null,"quartile_vak":null,"id_author_reference":null,"is_cr":null,"quartile_cr":null,"registration_number":null}
DOI: 10.21538/0134-4889-2019-25-1-245-261
Аннотация: В работе рассматривается невыпуклая негладкая задача оптимизации, где целевая функция и ограничения типа равенства и неравенства заданы d.c. функциями (представимыми в виде разности выпуклых функций). При этом исходная задача редуцирована к задаче без ограничений с помощью теории точного штрафа. Затем оштрафованная задача представлена как задача d.c. минимизации без ограничений, для которой разрабатывается новый математический инструментарий в виде условий глобальной оптимальности (УГО), которые сводят невыпуклую задачу к семейству линеаризованных (выпуклых) задач. Кроме того, из полученных УГО следует негладкая форма теоремы Каруша - Куна - Таккера (ККТ) для исходной задачи. При этом УГО обладают конструктивным (алгоритмическим) свойством, позволяющим “выйти” из локальных ям и стационарных (критических) точек исходной задачи. Эффективность УГО демонстрируется примерами.
Индексируется WOS: Нет
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет