Страница публикации
Analytical and Numerical Construction of Heat Wave Type Solutions to the Nonlinear Heat Equation with a Source
Авторы: Kazakov A.L., Kuznetsov P.A., Spevak L.F.
Журнал: Journal of Mathematical Sciences (United States)
Том: 239
Номер: 2
Год: 2019
Отчётный год: 2019
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI: 10.1007/s10958-019-04294-x
Аннотация: For a nonlinear parabolic heat equation we construct a heat wave type solution composed of the zero and nonnegative solutions joined continuously along the wave front. We prove the existence and uniqueness of an analytic solution to the problem with a given wave front in the cases of plane, circular, and spherical symmetry. The solution is constructed in the form of a characteristic series with recurrently defined coefficients. In the case of a power source, we show that the original problem can be reduced to the Cauchy problem for a second order ordinary differential equation and the solution is invariant. We present numerical results verified by using the constructed analytic solutions.
Индексируется WOS: Нет
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0