Страница публикации

Positional Solutions of Hamilton-Jacobi Equations in Control Problems for Discrete-Continuous Systems

Авторы: Dykhta V.A., Sorokin S.P.

Журнал: Automation and Remote Control

Том: 72

Номер: 6

Год: 2011

Отчётный год: 2011

Издательство:

Местоположение издательства:

URL:

Проекты:

DOI: 10.1134/S0005117911060051

Аннотация: We develop a canonical global optimality theory based on operating with the set of solutions for the Hamilton-Jacobi inequalities that parametrically depend on the initial (or final) position. These solutions, called positional L-functions (of Lyapunov type), naturally arise in the studies of control problems for discrete-continuous (hybrid, impulse) systems; an important prototype of such problems are classical optimal control problems with general end constraints on the trajectory. We analyze sufficient optimality conditions with this new class of L-functions and invert the maximum principle into a sufficient condition for nonlinear problems of optimal impulse control.

Индексируется WOS: Q4

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Нет

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0