Страница публикации
On Exact Solutions to a Heat Wave Propagation Boundary-Value Problem for a Nonlinear Heat Equation
Авторы: Kazakov A.L.
Журнал: Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya
Том: 16
Номер:
Год: 2019
Отчётный год: 2019
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI: 10.33048/semi.2019.16.073
Аннотация: The paper deals with a nonlinear second order parabolic PDE, which is usually called "the nonlinear heat equation". We construct and study a particular class of solutions having the form of a heat wave that propagates on a cold (zero) background with finite velocity. The equation degenerates on the front of a heat wave and its order decreases. This fact complicates the study. We prove a new existence and uniqueness theorem for a boundary-value problem with a given heat-wave front in the class of analytical functions. Also, we are looking for exact heatwave type solutions. The construction of these solutions is reduced to integration of the nonlinear second order ODE with singularity.
Индексируется WOS: Q5
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Нет
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0