Страница публикации
Волновое уравнение четвертого порядка в теории частиц со спином 3/2
Авторы: Марков Ю.А., Маркова М.А., Бондаренко А.И.
Журнал: Материалы Междунар. симпозиума, посвященного 100-летию матем. образования в Вост. Сибири и 80-летию со дня рождения проф. О. В. Васильева
Том:
Номер:
Год: 2019
Отчётный год: 2019
Издательство: Иркутский гос. ун-т
Местоположение издательства: Иркутск
URL:
Проекты:
DOI:
Аннотация: В рамках формализма Баба-Мадхаварао предложен самосогласованный подход к получению системы волновых уравнений четвертого порядка для описания массивных частиц со спином 3/2. Для этой цели вводятся дополнительный алгебраический объект, так называемый q-коммутатор (q - примитивный корень четвертой степени из единицы) и новый набор матриц ημ вместо исходных матриц βμ алгебры Баба-Мадхаварао. Показано, что в терминах матриц можно свести процедуру построения корня четвертой степени из волнового оператора четвертого порядка к некоторым простым алгебраическим преобразованиям и операции перехода к пределу при z - q, где z - комплексный параметр деформации, входящий в определение η-матриц. Вводится также набор из трёх операторов P1/2 и P3/2(q), обладающих свойствами проекторов. Эти операторы проектируют матрицы на секторы с 1/2- and 3/2-спинами.
Индексируется WOS: Нет
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0