Страница публикации

Локальные условия существования решений процессов выметания

Авторы: Толстоногов А.А.

Журнал: Математический сборник

Том: 210

Номер: 9

Год: 2019

Отчётный год: 2019

Издательство:

Местоположение издательства:

URL:

Проекты:

DOI: 10.4213/sm9122

Аннотация: Достаточным условием существования абсолютно непрерывного решения процесса выметания является абсолютная непрерывность в определенном смысле многозначного отображения, порождающего процесс выметания. Это свойство описывается в терминах расстояния по Хаусдорфу между значениями многозначного отображения. Однако существуют многозначные отображения, для которых расстояние по Хаусдорфу между значениями равняется бесконечности. К ним относятся, например, отображения, значениями которых являются гиперплоскости. Для таких отображений абсолютную непрерывность нельзя описать в терминах расстояния по Хаусдорфу. В работе рассматриваются условия, обеспечивающие локальную абсолютную непрерывность многозначного отображения. Используя эти условия, доказывается теорема существования абсолютно непрерывного решения процесса выметания. Полученные результаты используются для изучения процессов выметания с невыпуклозначными и овыпукленными возмущениями. Для таких процессов выметания доказываются теоремы существования решений и теорема релаксации.

Индексируется WOS: Нет

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Да

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0