Страница публикации
Локальные условия существования решений процессов выметания
Авторы: Толстоногов А.А.
Журнал: Математический сборник
Том: 210
Номер: 9
Год: 2019
Отчётный год: 2019
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI: 10.4213/sm9122
Аннотация: Достаточным условием существования абсолютно непрерывного решения процесса выметания является абсолютная непрерывность в определенном смысле многозначного отображения, порождающего процесс выметания. Это свойство описывается в терминах расстояния по Хаусдорфу между значениями многозначного отображения. Однако существуют многозначные отображения, для которых расстояние по Хаусдорфу между значениями равняется бесконечности. К ним относятся, например, отображения, значениями которых являются гиперплоскости. Для таких отображений абсолютную непрерывность нельзя описать в терминах расстояния по Хаусдорфу. В работе рассматриваются условия, обеспечивающие локальную абсолютную непрерывность многозначного отображения. Используя эти условия, доказывается теорема существования абсолютно непрерывного решения процесса выметания. Полученные результаты используются для изучения процессов выметания с невыпуклозначными и овыпукленными возмущениями. Для таких процессов выметания доказываются теоремы существования решений и теорема релаксации.
Индексируется WOS: Нет
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0