Страница публикации

Feedback necessary optimality conditions for nonlinear measure-driven processes

Тип публикации: Статья в журнале

Тип материала: Текст

Авторы: Samsonyuk O.N., Sorokin S.P., Staritsyn M.V.

Журнал: IFAC-PapersOnLine

Язык публикации: english

Том: 52

Номера страниц: 132-137

Количество страниц: 6

Номер: 16

Год публикации: 2019

Отчетный год: 2020

DOI: 10.1016/j.ifacol.2019.11.767

Аннотация: We consider a non-convex optimal impulsive control problem for nonlinear differential equations, driven by vector-valued Borel measures, under no commutativity assumptions of the Frobenius type. For this problem, we derive nonlocal necessary optimality conditions operating with a specific class of impulsive feedback controls, generated by certain functions of the Lyapunov type. These feedback controls are constructed in a way similar to the dynamical programming, but with the use of weakly monotone solutions to the corresponding Hamilton-Jacobi equation, instead of the Bellman’s function. We offer the notion of weakly monotone function with respect to a measure-driven differential equation, and give constructive criteria for this type of monotonicity. Based on a space-time representation of impulsive processes, we propose the concept of impulsive feedback control and present nonlocal necessary optimality conditions, which are shown to filter out non-optimal extrema of the impulsive Maximum Principle.

Индексируется WOS: Q5

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Нет

Индексируется ВАК: Нет

Индексируется CORE: Нет