Страница публикации

BV Continuous Solutions of an Evolution Inclusion with Maximal Monotone Operator and Nonconvex-Valued Perturbation. Existence Theorem

Авторы: Tolstonogov A.A.

Журнал: Set-Valued and Variational Analysis

Том: 29

Номер: 1

Год: 2021

Отчётный год: 2020

Издательство:

Местоположение издательства:

URL:

Проекты:

DOI: 10.1007/s11228-020-00535-3

Аннотация: An evolution inclusion with the right-hand side containing a time-dependent maximal monotone operator and a multivalued mapping with closed nonconvex values is studied in a separable Hilbert space. The dependence of the maximal monotone operator on time is described with the help of the distance between maximal monotone operators in the sense of Vladimirov. This distance as a function of time has bounded variation with an upper bound given by a nonatomic positive Radon measure. By a solution of the inclusion one means a continuous function of bounded variation whose differential measure (Stieltjes measure) is absolutely continuous with respect to the positive Radon measure above, and the values of the density of this differential measure with respect to the Radon measure belong to the right-hand side of the inclusion almost everywhere. Under the traditional assumptions on the perturbation (measurability, Lipschitzianity in the phase variable in the Hausdorff metric, linear growth condition), the existence of solutions is proven and some properties of the solution set are established.

Индексируется WOS: Q2

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Да

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0