Страница публикации

Compactness of BV Solutions of a Convex Sweeping Process of Measurable Differential Inclusion

Авторы: Tolstonogov A.A.

Журнал: Journal of Convex Analysis

Том: 27

Номер: 2

Год: 2020

Отчётный год: 2020

Издательство:

Местоположение издательства:

URL:

Проекты:

DOI:

Аннотация: A measurable sweeping process with a multivalued perturbation is considered in a separable Hilbert space. The retraction of the sweeping process is a function of bounded variation whose differential measure is absolutely continuous with respect to a positive Radon measure. The values of the multivalued perturbation are convex compact sets. By a solution of the sweeping process we mean a right continuous function of bounded variation whose differential measure is absolutely continuous with respect to some positive Radon measure and the density of the differential measure with respect to the Radon measure satisfies the corresponding differential inclusion. In order to study the existence of solutions and properties of the solution set, we introduce the topology of uniform convergence on the space of right continuous functions of bounded variation and we investigate the compactness of sets in this space. Under the most general assumptions similar to those used to deal with absolutely continuous solutions, we prove the existence of solutions and the compactness of the solution set.

Индексируется WOS: Q4

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Нет

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0