Страница публикации
Global and Local Search Methods for D.C. Constrained Problems
Авторы: Strekalovsky A.S.
Журнал: Lecture Notes in Computer Science
Том: 12095
Номер:
Год: 2020
Отчётный год: 2020
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI: 10.1007/978-3-030-49988-4_1
Аннотация: This paper addresses the general optimization problem ($$\mathcal P$$) with equality and inequality constraints and the cost function given by d.c. functions. We reduce the problem to a penalized problem ($$\mathcal P_{\sigma }$$) without constraints with the help of the Exact Penalization Theory. Further, we show that the reduced problem is also a d.c. minimization problem. This property allows us to prove the Global Optimality Conditions (GOCs), which reduce the study of the penalized problem to an investigation of a family of linearized (convex) problems tractable with the help of standard convex optimization methods and software. In addition, we propose a new Local Search Scheme (LSS1) which produces a sequence of vectors converging to a so-called critical point. On the other hand, the vector satisfying the GOCs turns out to be also a critical point. On the basis of the GOCs for finding a global solution to ($$\mathcal P_{\sigma }$$), we develop a Global Search Scheme, including the LSS1 with an update of the penalty parameter, and a special stopping criteria allowing detection of a feasible vector in the original problem ($$\mathcal P$$), and, consequently, a global solution to the original Problem ($$\mathcal P$$).
Индексируется WOS: Q4
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0