Страница публикации
Теорема Н.Н. Боголюбова для управляемой системы, связанной с вариационным неравенством
Тип публикации: Статья в журнале
Тип материала: Текст
Авторы: Толстоногов А.А.
Журнал: Известия РАН. Сер. математическая
Язык публикации: russian
Том: 84
Номера страниц: 165-196
Количество страниц: 32
Номер: 6
Год публикации: 2020
Отчетный год: 2020
Переводная версия: {"id":5935,"authors":"Tolstonogov A.A.","authors_count":1,"title":"Bogolyubov's theorem for a controlled system related to a variational inequality","journal":"Izvestiya Mathematics","year":2020,"reportYear":2020,"volume":"84","number":"6","month":null,"url":"","pages":"1192-1223","address":"","type":"\u0422\u0435\u043a\u0441\u0442","publisher":"","edition":"","language":"english","classification":"\u0421\u0442\u0430\u0442\u044c\u0438 \u0432 \u0437\u0430\u0440\u0443\u0431\u0435\u0436\u043d\u044b\u0445 \u0438 \u043f\u0435\u0440\u0435\u0432\u043e\u0434\u043d\u044b\u0445 \u0436\u0443\u0440\u043d\u0430\u043b\u0430\u0445","annotation":"We consider the problem of minimizing an integral functional on the solutions of a controlled system described by a non-linear differential equation in a separable Banach space and a variational inequality. The variational inequality determines a hysteresis operator whose input is a trajectory of the controlled system and whose output occurs in the right-hand side of the differential equation, in the constraint on the control, and in the functional to be minimized. The constraint on the control is a multivalued map with closed non-convex values and the integrand is a non-convex function of the control. Along with the original problem, we consider the problem of minimizing the integral functional with integrand convexified with respect to the control, on the solutions of the controlled system with convexified constraints on the control (the relaxed problem). By a solution of the controlled system we mean a triple: the output of the hysteresis operator, the trajectory, and the control. We establish a relation between the minimization problem and the relaxed problem. This relation is an analogue of Bogolyubov's classical theorem in the calculus of variations. We also study the relation between the solutions of the original controlled system and those of the system with convexified constraints on the control. This relation is usually referred to as relaxation. For a finite-dimensional space we prove the existence of an optimal solution in the relaxed optimization problem.","published_at":null,"doi":"10.1070\/IM8935","is_to_print":0,"is_special":0,"is_wos":1,"is_scopus":1,"is_risc":0,"is_editable":0,"publication_type_id":1,"added_by_rb_user_id":null,"notes":"","created_at":"2021-01-16 02:06:29","updated_at":"2021-01-16 02:08:19","translated_id":null,"quartile":"Q2","series":"","is_vak":0,"conference":null,"is_public_pdf":0,"eid":null,"wosid":null,"quartile_scopus":null,"report_type":null,"speaker":0,"is_wl":0,"quartile_wl":null,"count_pages":32,"date_event_start":null,"date_event_end":null,"location_event":null,"lvl_event":null,"link_event":null,"title_event":null,"is_affiliation_idstu":null,"is_expert_opinion":null,"quartile_vak":null,"id_author_reference":null,"is_cr":null,"quartile_cr":null,"registration_number":null}
Индексируется WOS: Нет
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет