Страница публикации
A Numerical Solution to the Two-Dimensional Nonlinear Degenerate Heat Conduction Equation with a Source
Авторы: Kazakov A.L., Spevak L.F., Nefedova O.A.
Журнал: AIP Conference Proceedings: 14th Intern. Conf. on Mechanics, Resource and Diagnostics of Materials and Structures (MRDMS 2020; Ekaterinburg; 9-13 November 2020)
Том: 2315
Номер:
Год: 2020
Отчётный год: 2020
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI: 10.1063/5.0036718
Аннотация: The paper develops an algorithm for solving the two-dimensional nonlinear degenerate parabolic heat conduction equation with a source depending on required function, with a specified law of heat wave front motion. The algorithm based on the boundary element method is implemented in the form of a program. To verify it, we use exact solutions the construction of which is reducible to solving a Cauchy problem for ordinary differential equations with a singularity before the highest derivative. The solutions to the Cauchy problem are constructed in the form of power series with recurrently computed coefficients (with a proof of the statement providing its convergence) and by the boundary element method.
Индексируется WOS: Q5
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0