Страница публикации
Iterative algorithms for constructing the thinnest coverings of convex polyhedra by sets of different balls
Тип публикации: Статья в журнале
Тип материала: Текст
Авторы: Lebedev P.D., Kazakov A.L.,
Журнал: Trudy Instituta Matematiki i Mekhaniki URO RAN
Язык публикации: english
Том: 27
Номера страниц: 116-129
Количество страниц: 14
Номер: 1
Год публикации: 2021
Отчетный год: 2021
DOI: 10.21538/0134-4889-2021-27-1-116-129
Аннотация: In control theory and various areas of applied mathematics, it is important to approximate sets of complex geometry by unions of simple unified bodies. One of the most common methods here is covering sets with balls. In the classical statement, all the balls are equal; nevertheless, a more general statement is also of interest when the balls can be different. In this paper, we study the problem of constructing a covering of a compact set M in three-dimensional Euclidean space by a set of a given number of balls whose radii are equal to the product of a common parameter r and an individual positive coefficient. The optimality criterion is the minimum of r. We propose heuristic algorithms for constructing such coverings based on splitting the set M into zones of influence of points and finding their Chebyshev centers. Statements about the properties of these algorithms are proved, and the algorithms are implemented. The problems of covering a cube with different sets of balls of two types are solved numerically. Possible directions of further research are outlined and discussed.
Индексируется WOS: Q5
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Нет
Индексируется ВАК: Нет
Индексируется CORE: Нет