Страница публикации
Exact and approximate solutions of a problem with a singularity for a convection-diffusion equation
Авторы: Kazakov A.L., Spevak L.F.
Журнал: Journal of Applied Mechanics and Technical Physics
Том: 62
Номер: 1
Год: 2021
Отчётный год: 2021
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI: 10.1134/S002189442101003X
Аннотация: Solutions to a nonlinear parabolic convection–diffusion equation are constructed in the form of a diffusion wave that propagates over a zero background at a finite velocity. The theorem of existence and uniqueness of the solution is proven. The solution is constructed in the form of a characteristic series whose coefficients are determined using a recurrent procedure. Exact solutions of the considered type and their characteristics, including the domain of existence, are determined, and the behavior of these solutions on the boundaries of this domain of existence is studied. The boundary element method and the dual reciprocity method are used to develop, implement, and test an algorithm for constructing approximate solutions.
Индексируется WOS: Q4
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Нет
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0