Страница публикации
An RVML extension for modeling fuzzy rule bases
Тип публикации: Статья в журнале
Тип материала: Текст
Авторы: Dorodnykh N.O., Yurin A.Y.
Журнал: CEUR Workshop Proceedings: 1st International Workshop on Advanced Information and Computation Technologies and Systems (AICTS 2020, Irkutsk, 7-11 December 2020)
Язык публикации: english
Серия книг: CEUR Workshop Proceedings
Том: 2858
Номера страниц: 34-45
Количество страниц: 12
Год публикации: 2021
Отчетный год: 2021
Аннотация: Rules are still the most widespread way to represent expert knowledge despite the popularity of semantic technologies. The effective use of rules in decision-making in the case of inaccurate or uncertain information requires the development of specialized means and software for visual and generative programming. This paper considers an extension of the Rule Visual Modeling Language called FuzzyRVML designed for modeling fuzzy rule bases. FuzzyRVML supports a fuzzy datatype, concepts of a linguistic variable, terms, and certainty factors. The descriptions of FuzzyRVML basic elements, main constructions, and an illustrative example containing FuzzyCLIPS source code generation are presented. The evaluation and implementation of this notation are made based on the Personal Knowledge Base Designer software.
Индексируется WOS: Нет
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет