Страница публикации

Об одном методе численного решения вырожденных интегро-дифференциальных уравнений со слабой особенностью в ядре

Тип публикации: Статья в журнале

Тип материала: Текст

Авторы: Чистякова Е.В., Соловарова Л.С., Доан Тай Сон

Журнал: Вестник Южно-Уральского гос. ун-та. Сер. Вычисл. математика и информатика

Язык публикации: russian

Том: 10

Номера страниц: 5-15

Количество страниц: 11

Номер: 3

Год публикации: 2021

Отчетный год: 2021

DOI: 10.14529/cmse210301

Аннотация: Формулировки многих прикладных задач часто включают в себя дифференциальные уравнения и интегральные уравнения Вольтерра первого и второго рода. Комбинируя такие уравнения, мы получаем систему интегро-дифференциальных уравнений с вырожденной матрицей перед главной частью. Такие системы называются вырожденными интегро-дифференциальными уравнениями. Если они не содержат интегральную составляющую, то их называют дифференциально-алгебраическими уравнениями. Если отсутствует слагаемое с производной, то их принято называть интегро-алгебраическими уравнениями. К подобным математическим формулировкам приводит моделирование процессов, протекающих в электрических и гидравлических цепях, различных динамических системах, в частности, многотельных. Поэтому качественное исследование и численное решение такого рода задач являются достаточно актуальными, а результаты исследований - востребованными на практике. В данной статье на основе теории матричных пучков, а также с использованием схем исследований, разработанных для дифференциально-алгебраических и интегро-алгебраических уравнений, проанализированы условия существования и единственности решения вырожденных интегро-дифференциальных уравнений со слабой особенностью в ядре и предложен численный метод их решения, который был реализован в пакете прикладных программ MATLAB и протестирован на модельных примерах.

Индексируется WOS: Нет

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Да

Индексируется ВАК: Нет

Индексируется CORE: Нет