Страница публикации
On First Integrals and Invariant Manifolds in the Generalized Problem of the Motion of a Rigid Body in a Magnetic Field
Тип публикации: Статья в журнале
Тип материала: Текст
Авторы: Irtegov V., Titorenko T.
Журнал: Lecture Notes in Computer Science: 23rd Intern. Workshop on Computer Algebra in Scientific Computing (CASC 2021, Sochi, 13-17 September 2021)
Язык публикации: english
Серия книг: Lecture Notes in Computer Science
Том: 12865
Номера страниц: 157 - 173
Количество страниц: 17
Год публикации: 2021
Отчетный год: 2021
DOI: 10.1007/978-3-030-85165-1_10
Аннотация: Differential equations describing the motion of a rigid body with a fixed point under the influence of both a magnetic field generated by the Barnett–London effect and potential forces are analyzed. We seek first integrals and invariant manifolds of the equations in the form of polynomials of the second, third, and fourth degrees and conduct the qualitative analysis of the equations in the found particular cases of the existence of additional integrals. Special solutions are found from the necessary extremum conditions of the integrals and their Lyapunov stability is investigated. Computer algebra methods such as the reduction of a polynomial with respect to a list of polynomials, the Gröbner basis method, etc. are used to obtain the integrals and manifolds and to analyze the equations.
Индексируется WOS: Q4
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет