Страница публикации

A new look at some facts of number theory: alternate divisibility when constructing simple solutions to problems of arithmetic

Авторы: Danilov V.A., Daneev A.V., Rusanov V.A.

Журнал: JP Journal of Algebra Number Theory and Applications

Том: 51

Номер: 2

Год: 2021

Отчётный год: 2021

Издательство:

Местоположение издательства:

URL:

Проекты:

DOI: 10.17654/NT051020125

Аннотация: The "Kronecker approach" is being developed to the study of general problems of number theory, in a very broad sense related to the theory of solutions of Diophantine equations. Such an "elementary" approach to some well-known facts of quadratic forms of a number can be transferred almost directly to the case of integral Euclidean rings (when we have division with remainder). In this formulation, wellknown results are obtained quite simply (for example, Fermat-Euler's Theorem), as well as some new facts concerning quadratic forms for representing prime numbers as such, as well as doubled or tripled ones in particular.

Индексируется WOS: Q5

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Нет

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0