Страница публикации
Максимальная монотонность оператора Немыцкого
Авторы: Толстоногов А.А.
Журнал: Функциональный анализ и его приложения
Том: 55
Номер: 3
Год: 2021
Отчётный год: 2021
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI: 10.4213/faa3892
Аннотация: В сепарабельном гильбертовом пространстве рассматривается семейство максимально монотонных операторов с областями определения, зависящими на отрезке числовой прямой от времени. Рассматривается также пространство интегрируемых с квадратом функций, определенных на этом отрезке, со значениями в указанном гильбертовом пространстве. Исходя из семейства максимально монотонных операторов, на пространстве интегрируемых с квадратом функций строится оператор суперпозиции - оператор Немыцкого. При достаточно общих предположениях доказывается максимальная монотонность оператора Немыцкого. Дается конкретизация этого результата применительно: к семейству максимально монотонных операторов, наделенных псевдорасстоянием по А. А. Владимирову; к семейству субдифференциальных операторов, порожденных собственной выпуклой зависящей от времени полунепрерывной снизу функцией; к семейству нормальных конусов движущегося выпуклого замкнутого множества.
Индексируется WOS: Нет
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0