Страница публикации
Exact and approximate solutions of a degenerate reaction-diffusion system
Авторы: Kazakov A.L., Spevak L.F.
Журнал: Journal Of Applied Mechanics And Technical Physics
Том: 62
Номер: 4
Год: 2021
Отчётный год: 2021
Издательство:
Местоположение издательства:
URL:
Проекты:
DOI: 10.1134/S0021894421040179
Аннотация: We consider the problem of constructing exact solutions to a system of two coupled nonlinear parabolic reaction-diffusion equations. We study solutions in the form of diffusion waves propagating over zero background with a finite speed. The theorem on the construction of exact solutions by reducing to the Cauchy problem for a system of ordinary differential equations (ODEs) is proved. A time-step numerical technique for solving the reaction-diffusion system using radial basis function expansion is proposed. The same technique is used to solve the systems of ordinary differential equations defining exact solutions to the reaction-diffusion system. Numerical analysis and estimation of the accuracy of solutions to the system of ODEs are carried out. These solutions are used to verify the obtained time-step solutions of the original system.
Индексируется WOS: Q4
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0