Страница публикации
Numerical Solution of Integral-Algebraic Equations with a Weak Boundary Singularity by k-step Methods
Тип публикации: Статья в журнале
Тип материала: Текст
Авторы: Botoroeva M.N., Budnikova O.S., Bulatov M.V., Orlov S.S.
Журнал: Journal Computational Mathematics and Mathematical Physics
Язык публикации: english
Том: 61
Номера страниц: 1787–1799
Количество страниц: 13
Номер: 11
Год публикации: 2021
Отчетный год: 2021
DOI: 10.1134/S096554252111004X
Аннотация: The article presents the construction of k-step methods for solving systems of Volterra integral equations of the first and the second kind with a weak power-law singularity of the kernels in the lower limit of integration. The matrix-vector representation of such systems has the form of an abstract equation with a degenerate coefficient matrix at the nonintegral terms, which is called an integral-algebraic equation. The methods proposed are based on extrapolation formulas for the principal part, Adams-type multistep methods, and a product integration formula for the integral term. The weights of the quadrature formulas constructed are obtained explicitly. A theorem on the convergence of the methods developed is proved. The theoretical results are illustrated by numerical calculations of test examples.
Индексируется WOS: Q4
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет