Страница публикации
Classification of Sentinel-2 satellite images of the Baikal Natural Territory
Авторы: Bychkov I.V., Ruzhnikov G.M., Fedorov R.K., Popova A.K., Avramenko Y.V.
Журнал: Computer Optics
Том: 46
Номер: 1
Год: 2022
Отчётный год: 2022
Издательство:
Местоположение издательства:
URL: http://www.computeroptics.ru/KO/PDF/KO46-1/460111.pdf
Проекты:
DOI: 10.18287/2412-6179-CO-1022
Аннотация: The paper considers a problem of classifying Sentinel-2 multispectral satellite images for environmental monitoring of the Baikal Natural Territory (BNT). The specificity of the BNT required the creation of a new set of 12 classes, which takes into account current problems. The set was formed in such a way that the areas corresponding to these classes completely covered the BNT. A training dataset was formed using a web interface based on Sentinel-2 satellite images. The classification of satellite images was carried out using Random Forest algorithms and the ResNet50 neural network. The accuracy of the calculations showed that the classification results can be used to solve actual problems of the Baikal natural territory, in particular, to analyze changes in the forestland, assess the impact of climate change on the landscape, analyze the dynamics of development activities, create farmland inventory, etc.
Индексируется WOS: Q5
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Нет
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0