Страница публикации

Data processing in problem-solving of energy system vulnerability based on in-memory data grid

Авторы: Gorsky S., Feoktistov A., Edelev A.

Журнал: Lecture Notes in Networks and Systems

Том: 424

Номер:

Год: 2022

Отчётный год: 2022

Издательство:

Местоположение издательства:

URL:

Проекты:

Математическое и информационное моделирование инфраструктурных объектов Байкальской природной территории

Технологии разработки и анализа предметно-ориентированных интеллектуальных систем группового управления в недетерминированных распределенных средах

DOI: 10.1007/978-3-030-97020-8_25

Аннотация: Nowadays, data analysis is an integral part of large-scale scientific and applied experiments. Opportunities of modern computing environments allow us to move from operating with traditional storage systems within solving data-intensive problems to the in-memory data grid technologies. Such technologies improve the performance and scalability of data processing compared to external databases because of a faster random access memory and other hardware advancements. The considered data grid enables applications to cache data in the memory. Based on our practical experience, we discuss the advantages of applying the in-memory data grid technology to analyze the energy system vulnerability. The complexity of this problem is determined by considering possible combinations of simultaneous failures of energy system elements. We use open source-based Apache Ignite to support high-performance computing and data distribution. The study aims to evaluate the impact of the data grid scaling on the problem-solving quality criteria. We used the resources of the public access Irkutsk Supercomputer Center to carry out experiments.

Индексируется WOS: Нет

Индексируется Scopus: Нет

Индексируется УБС: Нет

Индексируется РИНЦ: Да

Индексируется ВАК: Нет

Индексируется CORE: Нет

Публикация в печати: 0