Страница публикации
On a Nonconvex Distance-Based Clustering Problem
Тип публикации: Статья в журнале
Тип материала: Текст
Авторы: Gruzdeva T., Ushakov A.
Журнал: Lecture Notes in Computer Science: 21st International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2022
Язык публикации: english
Серия книг: 21st International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2022
Том: 13367
Номера страниц: 139 - 152
Количество страниц: 14
Год публикации: 2022
Отчетный год: 2022
DOI: 10.1007/978-3-031-09607-5_10
Аннотация: Clustering is one of the basic data analysis tools and an important subroutine in many machine learning tasks. Probably, the most well-known and popular clustering model is the Euclidean minimum-sum-of-squares clustering problem, also known as the k-means problem. Clustering with Bregman divergences is a generalization of the k-means problem where the distances between data items and closest cluster centers are computed according to any Bregman divergence, rather than the squared Euclidean distance. In this paper, we consider a mathematical programming problem of clustering with Bregman divergences. We propose several representations of the problem in the form of a DC (difference of convex) program and develop a DC programming approach to solve it. We provide particular DC representations and particular DC solution algorithms for several widely-known Bregman divergences.
Индексируется WOS: Q4
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Нет
Индексируется ВАК: Нет
Индексируется CORE: Нет