Страница публикации
Approximation of positional impulse controls for differential inclusions
Авторы: Finogenko I.A., Sesekin A.N.
Журнал: Ural Mathematical Journal
Том: 8
Номер: 1 (14)
Год: 2022
Отчётный год: 2022
Издательство:
Местоположение издательства:
URL:
Проекты:
Теория и методы исследования эволюционных уравнений и управляемых систем с их приложениями
Аннотация: Nonlinear control systems presented as differential inclusions with positional impulse controls are investigated. By such a control we mean some abstract operator with the Dirac function concentrated at each time. Such a control (“running impulse”), as a generalized function, has no meaning and is formalized as a sequence of correcting impulse actions on the system corresponding to a directed set of partitions of the control interval. The system responds to such control by discontinuous trajectories, which form a network of so-called “Euler’s broken lines.” If, as a result of each such correction, the phase point of the object under study is on some given manifold (hypersurface), then a slip-type effect is introduced into the motion of the system, and then the network of “Euler’s broken lines” is called an impulse-sliding mode. The paper deals with the problem of approximating impulse-sliding modes using sequences of continuous delta-like functions. The research is based on Yosida’s approximation of set-valued mappings and some well-known facts for ordinary differential equations with impulses.
Индексируется WOS: Нет
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0