Страница публикации
Impulse Response Matrix for Time-Varying System of Differential- Algebraic Equations
Авторы: Shcheglova A.A.
Журнал: Proc. of the 7th Intern. Conf. “Nonlinear Analysis and Extremal Problems” (NLA-2022, Irkutsk, 15-22 July 2022)
Том:
Номер:
Год: 2022
Отчётный год: 2022
Издательство: ISDCT SB RAS
Местоположение издательства: Irkutsk
URL:
Проекты:
DOI:
Аннотация: A range of questions related to the impulse response matrix [1] for a system of linear differential-algebraic equations (DAE) [2] is considered. For systems with infinitely differentiable coefficients, it is shown that this matrix is represented as a sum of the impulse responsematrices of the differential and algebraic subsystems. The form of non-degenerate change of variables has been found, which does not affect the view of impulse response matrix.Realizations of this matrix are proposed to construct in the class of index 1 DAE, which are separated into differential and algebraic parts. The necessary and sufficient conditions forthe realisability of an impulse response matrix in the class of algebraic systems are obtained.The questions of the methods of construction and the dimension of the minimal realization of such a matrix are considered under various assumptions.
Индексируется WOS: Нет
Индексируется Scopus: Нет
Индексируется УБС: Нет
Индексируется РИНЦ: Да
Индексируется ВАК: Нет
Индексируется CORE: Нет
Публикация в печати: 0