Страница публикации
Solution to a Two-Dimensional Nonlinear Parabolic Heat Equation Subject to a Boundary Condition Specified on a Moving Manifold
Тип публикации: Статья в журнале
Тип материала: Текст
Авторы: Kazakov A.L., Nefedova O.A., Spevak L.F.
Журнал: Computational Mathematics and Mathematical Physics
Язык публикации: english
Том: 64
Номера страниц: 266–284
Количество страниц: 19
Год публикации: 2024
Отчетный год: 2024
URL: https://link.springer.com/article/10.1134/S0965542524020052
DOI: 10.1134/S0965542524020052
EID: 2-s2.0-85189312378
Аннотация: This paper is devoted to the study of a degenerating parabolic heat equation with nonlinearities of a general type in the presence of a source (sink) in the case of two spatial variables. The problem of initiating a heat wave propagating over a cold (zero) background with a finite velocity and a boundary condition specified on a moving manifold—a closed line—is considered. For this problem, a new existence and uniqueness theorem is proved, a numerical algorithm for constructing a solution based on the boundary element method, collocation method, and difference time approximation is proposed; a special change of variables of the hodograph-type transformation is used. New exact solutions to this equation in the case of power nonlinearities are found. A numerical algorithm is implemented, and a numerical experiment is carried out. A comparison of the constructed numerical solutions with exact ones (found both in this paper and earlier) showed good agreement. The numerical convergence in the time step and number of collocation points is proved.
Индексируется WOS: Q6
Индексируется Scopus: Q5
Индексируется УБС: УБС1
Индексируется РИНЦ: Да
Индексируется ВАК: К1
Индексируется CORE: Нет